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Exact calculations of the Potts model partition functid{G,q,v) have been presented for arbitraryand
temperaturelike variable on self-dual strip graph& of the square lattice with fixed width, and arbitrarily
great length_, with two types of boundary conditions. Lettihg— <, the resultant free energy and complex-
temperature phase diagram have been computed, including theBostiere the free energy is nonanalytic.
Results are analyzed for widths =1,2,3. These results have been used to study the approach to the large-

limit of B.
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I. INTRODUCTION

PACS nuni)er05.20-y, 64.60.Cn, 75.10.Hk

high-temperature phase to a low-temperature phase with
spontaneously broken symmetry and long-range ferromag-

The g-state Potts model has served as a valuable modeletic order(magnetizatioh For >4, this transition is first-
for the study of phase transitions and critical phenomenarder, with a latent heat that increases monotonically gjth

[1,2]. On a lattice, or, more generally, of@nnecteggraph
G, at temperaturd, this model is defined by the partition
function

2(G.q)=2, e A", (1.0)
with the (zero field Hamiltonian
H= (1.2

- JE 5a-i0'~1
an !

where o;=1,...0 are the spin variables on each vertex
eG; B=(kgT) % and(ij) denotes pairs of adjacent verti-
ces. The graple = G(V,E) is defined by its vertex s&t and
its edge(bond setE; we denote the number of vertices @f
asn=n(G)=|V| and the number of edges & as e(G)
=|E|. We use the notation

Koy 1,

K=BJ, a=e v=a—1, 1.3
so that the physical ranges afe a=1, i.e.,v=0 corre-
sponding to=T=0 for the Potts ferromagnéEM), with
J>0, and(ii) 0<a<l, i.e.,, —1<v =<0, corresponding to 0
<T=<x for the Potts antiferromagndiAFM), with J<O.
One defines thdreduced free energy per sitd=— g8F,

whereF is the actual free energy, via

f({G},q,v)= lim In[Z(G,q,v)*],

n—o

(1.9

where we use the symb{E} to denote limy_,.. G for a given
family of graphs.

On a two-dimensional2D) lattice, for theq=2 Ising
case, and forq=3,4, the Potts ferromagnet exhibits a
second-order phase transition from a paramagn@id)
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approaching a limiting constant gs—« [2,3]. The behavior
of the Potts antiferromagnet depends on the valug ahd
the type of lattice, as will be discussed further below.
LetG’'=(V,E’) be a spanning subgraph Gf i.e., a sub-
graph having the same vertex &&nd a subset of the edge
set,E’'CE. ThenZ(G,q,v) can be written as the sufd]

Z2(G,qu)= X, q<€peC)),

G'cG

1.5

wherek(G') denotes the number of connected components
of G’. Since we only consider connected gra@sve have
k(G)=1. The formula1.5) enables one to generaligdrom
7, to R, (keepinguv in its physical range The formula
(1.5 shows thatZ(G,q,v) is a polynomial inq and v
(equivalently,a). The Potts model partition function on a
graph G is essentially equivalent to the Tutte polynomial
[5—7] and Whitney rank polynomidR,8—1( for this graph,
and this connection will be useful below.

Using the formulg1.5) for Z(G,q,v), one can generalize
g from Z, not just toR, but toC andv from its physical
ferromagnetic and antiferromagnetic ranges0< and
—1<v=<0 tov eC. A subset of the zeros df in the two-
complex dimensional spad& defined by the pair of vari-
ables(q,v) form an accumulation set in the—oo limit,
denoteds, which is the continuous locus of points where the
free energy is nonanalytic. The program of studying statisti-
cal mechanical models with external field generalized from
R to C was pioneered by Yang and Lé#&1], and the corre-
sponding generalization of the temperature from physical to
complex values was initiated by Fishdr2]. Here we allow
both g and the temperature-like variableto be complex.
For a given value ob, one can consider this locus in the
plane, and we shall sometimes denote iBgs and similarly,
for a given value ofg (not necessarilye 7, ), one can con-
sider this locus in the plane of a complex-temperature vari-
able such as or
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stractly, one studies lattice grapfswith the property that
(= —. (1.6)  the planar duaG* is isomorphic toG, which we write sim-
\/a ply asG=G*. Here we recall that the dual of a planar graph
G with n vertices, e edges, and faces is the graplG*
It will be convenient to introduce polar coordinates, letting obtained by associating a vertex @f with each face ofG
l=|¢le'". and connecting each pair of vertices®# by edges running
In this paper we shall present exact calculations of thehrough the edges of5. It follows that n(G*)=f(G),
Potts model partition functioZ(G,q,v) for arbitrarygand e(G*)=¢e(G), and f(G*)=n(G). The Potts model parti-
v on self-dual strip graph& of the square lattice with fixed tion function satisfies the relation
width L, and arbitrarily great length, with two types of B
bounda)r/y conditions. Letting,— o, we compute the result- 2(G,q,0)=q" " ®®Z(G*,q,vy), (1.7
ant free energy and complex- temperature phase diagram, . . .
Results are analyzed for widthg=1,2,3. We shall use these Where the dual image af is vq, given by
results to study the approach to the laggkmit of B. q
There are several motivations for this study. Clearly, new Vg=—, (1.8
exact calculations of Potts model partition functions on lat-
tice strips with arbitrarily large numbers of vertices are of; o in terms ofz, the duality map is the inversion map
value in their own right. This is especially the case since the
free energy of the Potts model has never been calculated 1
exactly ford=2 except in theg=2 Ising case in 2D. Just as Zd:z 1.9
the study of functions of a complex variable can yield a
deeper understanding of functions of a real variable, so alsThus, it is also useful to plot Fisher zeros in terms of the
the investigation of complex-temperature phase diagrams ofariable Z, since the accumulation sé is invariant under
spin models can provide further understanding of the physiinversion for a self-dual graph
cal behavior of these models. Besidg$2], complex- L
temperature singularities were noticed in early series analy- . - .
ses(e.g.,[13]), and many studies have been carried out on G=G*=B s invariant under gHZ' (1.10
complex-temperaturé-ishe) zeros of the partition function
of the Ising model and its generalization to tpstate Potts It was found that complex-temperature zeros calculated for
model[14—61]. In particular, several exact determinations of finite sections of the square lattice with duality-preserving
complex-temperature phase diagrams of the Potts model dvoundary conditionsDBC’s) have the appealing property of
infinite-length, finite-width lattice strip§41,52—54,56—-58  lying exactly on an arc of the unit circ|¢|=1 in the{ plane
in comparison with both exact solutions for tige=2 2D  for Re(()=0 [29,38,39. (For physical temperature the coef-
complex-temperature phase diagrajtg,33,37 and finite-  ficients of powers oa= e are positive, so there are no zeros
lattice calculations of Fisher zer$29,38,39,43,47,48have  on the positive real axis R&(>0 for any finite lattice. How-
shown that, although the physical thermodynamic propertiesver, in the thermodynamic limit, the phase boundary crosses
of these strips are essentially one-dimensional, one can nethis axis ata,=1+/q, i.e., {,=1.) In Ref. [43] several
ertheless gain important insights into certain complextypes of different self-dual boundary conditions were used in
temperature properties of the model on the correspondingrder to ascertain which features are common to each of
two-dimensional lattice. For a model above its lower criticalthese and hence might be relevant for the thermodynamic
dimension, a complex-temperature phase diagram includdsnit. However, because of the scatter of zeros in theaRe(
the complex-temperature extensions of the paramagnetic ard0 half plane and the dependence of the pattern of zeros, it
ferromagnetic phases as well as a possible antiferromagnetitas not so far been possible to reach a conclusion concerning
phase and other phas@enotedO in Ref.[33]) that have no  the portion of the complex-temperature phase boungary
overlap with any physical phase. For the infinite-lengththis region(although some points on the boundary have been
finite-width strips under consideration here, for finifethe  reliably located by analysis of series expansip#3)).
complex-temperature phase diagram includes only PMGnd  An interesting exact result was obtained by Wu and col-
phases since there are no broken-symmetry phases. laborators, who gave an elegant prd88], using Euler's
An early study of the complex-temperature phase diagrandentity for partitions, that for the Potts model on the square
for the square-lattice Potts model led to the suggestion thdattice, after having taken the thermodynamic limit so that
the locusB, which is comprised of the circléa+1|=v2 for  zeros ofZ in the complex{ plane have merged to form the
g=2 [12] might generalize to the union of the circlés  continuous locugs, if one takes the further limigj— e, this
—1|=\q and|a+1|=\4—q for 1=<q=<4 [22], but subse- locus B is the circle |{|=1 for the square lattice. It is
quent studies found that many of the Fisher zeros in thetraightforward to show that the same conclusion holds if
Re(@)<0 half-plane do not lie on a circular arc but insteadone keeps., fixed and finite, and takels,—, after which
show considerable scattf23,29,38,43% The infinite square one takes the limij—. Thus, for the infinite-length limit
lattice is self-dual, and for calculations on finite sections ofof the self-dual strips that we consider here, (lim B is
the square lattice, it was found to be useful to employ boundagain the unit circl¢Z| = 1. In 2D, the interior and exterior of
ary conditions that preserve this self-duality. Stated more abkhis circle|{|=1 form the complex- temperature extensions
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of the PM and FM phases, respectively. Since the infinitetremain intact for finite as well as infinitg. If it were to
length, finite-width strips under study here are quasi-onebifurcate, this would imply a new third phase between the
dimensional systems, there cannot be any broken-symmet®M and FM phases, contrary to the known properties of the
phase at finite temperature for a spin model with short-rang®otts model, so, given the invariance Bfunder the inver-
interactions and hence there is no FM phase or its complexsion symmetry(1.10), this portion must remain on the circle
temperature extension. Note that any finite temperaturg/|=1.
point, i.e., —1<v < gets mapped td=0 in the limit g Since the explicit calculations of Fisher zeros showed
—o0. The identification of phases thus proceeds as follows idarge scatter away from|=1 in the Re{)<0 half plane
this limit, for the infinite-length finite width strips: the inte- even for values well above=4, such agj=10[39,43, this
rior of the circle|{|=1 is the PM phase, since it is analyti- suggested that the totality of Fisher zeros would only cluster
cally connected to the infinite-temperature poirt {=0. on the circle|¢|=1 in the limit g— itself but some zeros,
The phase in the exterior may be interpreted as equivalent @nd some portion of their accumulation g&tvould deviate
the T=0 point, in the sense that a finite value fn this  from it for all finite g. Calculations using the usual Hamil-
region is obtained by taking the double lingjt-~ and|v| tonian formulation of the Potts model and associated transfer
—oo with v/+\/q held fixed. matrix-methods become increasingly cumbersome for lgrge
Since, as noted above, for finitg the actual pattern of because of the increasingly many states. For the purpose of
zeros calculated on finite sections of the square in thé&tudying the larget behavior of the zeros, it is convenient to
Re()<0 half plane show considerable scat{@9,38,43,  solve forZ(G,q,v) for arbitraryq andv on large finite lat-
two questions arise naturally; first, having taken the 2D thertice sections. This was done in Rg51] and the zeros were
modynamic limit, if one starts with @/=0 and increases this calculated forq up to 100; again these showed only a slow
quantity from zero, is there a finite interval in which the approach to the circl¢{|=1. Together with the previous
locus B continues to be the circleZ|=1 before there are calculations forg up to 10, it was concluded in R¢61] that
deviations, or do these deviations occur for any finite valughis evidence supported the inference that the totality of
of 1/, no matter how small. We shall address this questiorFisher zeros only lie on the circlgg|=1 in the limit g
here. A different question can also be posed for a finite sec—. This type of calculations has also been done in Ref.
tion of the square lattice: for such a section, with a given siz¢60] with the same conclusion. Our exact results on infinite-
and given duality-preserving boundary conditions, is there dength finite-width strips complement these finite-lattice cal-
range inz=1/q above zero in which all of the finitely many culations and allow a rigorous conclusion that for these strips
Fisher zeros still occur on the circé|=1 or not. This has B deviates from{|=1 for any 14 no matter how small.
been considered in Refi38,43,6Q and we shall not pursue  These results are relevant in another way. Lajgeries
it here. Since one does not have an exact solution for the 2Bxpansiongin the variable 1Jq) have been useful in study-
Potts model for arbitraryg, and hence also no solution for ing the thermodynamic properties of Potts mod&2—64.
the complex-temperature phase boundéryt has not been Largeq expansionsin the variable 1/§—1)] have also been
possible to determine the precise behavior of this locus anasseful for a particular special case of the Potts model,
lytically in the q— < limit. namely, theT=0 special case of the Potts antiferromagnet,
Here one sees the value of exact solutions for the Pottehere the partition function on a grapgh reduces to the
model free energy and resultant complex-temperature boundhromatic polynomial
ary B on infinite-length, finite-width strips, since for these
strips, one can obtain exact analytic answers to the behavior Z2(G,q,—1)=P(G,q), (1.1
of B in theg—« limit. As we shall discuss, it is easy to see
that one aspect of this behavior is special to the quasi-onexvhereP(G,q) is the chromatic polynomidin q) expressing
dimensional nature of the infinite-length strips and is notthe number of ways of coloring the vertices of the gr&ph
relevant for the 2D model, namely, that ag iricreases from with g colors such that no two adjacent vertices have the
0, a gap opens in the circle= 1. This simply reflects the fact same colof8,65]. Indeed, for a given grap& and for suf-
that for a quasi-one-dimensional spin model with short-rangdiciently largeq, the Potts antiferromagnet exhibits nonzero
interactions there is no finite-temperature phase transitioground state entropgwithout frustration. This is equivalent
and the free energy is analytic for all finite temperatures, ando a ground state degeneracy per siterteX, W>1, since
hence for G< /<. However, this is not a drawback of the Sy=kg In W, whereW({G},q)=lim,_.. P(G,q)'". Largeq
method, since finite-lattice calculations of Fisher zeros orseries expansions fow,({G})=q *W({G},q) have been
sections of the square lattice have shown that they lie nicelgiven, e.g., in Refg.66—72.
on the circle|Z|=1 in the region near the poirgt=1 (while A different motivation for the present study is the follow-
avoiding the precise poirft=1 if nis finite). Hence, one can ing. Just as was true for the double-complexification of field
infer that in the thermodynamic limit, asdlfis increased and temperature studied in Ref85—40, where one gained
from 0, this portion ofBB will remain as an arc of the unit a deeper understanding of the singular lo@entinuous ac-
circle. Indeed, from general argumef&3], one knows that cumulation set of partition function zernosy considering the
for the model above its lower critical dimensionality, where separate projections in the planes of complex field and com-
there is a ferromagnetic phase, the portion of the phasplex temperature by considering these as parts of a single
boundaryB that separates the complex-temperature extendnderlying submanifoldwith possible singularitiesin the
sion of the paramagnetic phase from the FM phase must? space of complex temperature and field, so also here, one
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gains similar insight into the projections Bfin the complex
g andv plane by relating these as different slices of the locus
B in the C? space defined byg(v).

Il. GENERALITIES

We refer the reader to our earlier papers containing exact
calculations oZ(G,q,v) for a number of further details. We
recall that the formal definition of the free energy may be
insufficient to define this function at certain special special
valuesq=qs [53]; it is necessary to specify the order of the  FIG. 1. Example of arL, XL, strip of the square lattice with
limits that one uses. We denote the limits with the two dif-DBC2 boundary conditions, for the cakg=3, L,=4.
ferent orders as definitions using different orders of limits as

fgn andfyg: tude of these dominant’s. The special case of this for the
L . 1 chromatic polynomial was discussed in Rdf&4,75.
f”q({G}’q'v)_r{Tl nlm n—*InZ(G.q.v) 21 Let us next define the self-dual strip graphs that we con-
° sider here. The first type, with boundary conditions that we
and denote as DBC1following our nomenclature in Ref43])
was discussed in Ref38] and illustrated in Fig. 1 of that
fan({G}.q,v)= lim lim n1Inz(G,q,v). (2.2  paper. We shall need a straightforward generalization of it to
0—0s N— the case of a, XL, lattice withL,#L,, and we describe
this as follows. Let the lattice be oriented with theandy
Of course, in discussions of the usupbtate Potts model directions being horizontal and vertical, respectively. Let all
(with positive integerg), one automatically uses the defini- of the vertices on the upper and right-hand sides, including
tion in Eq. (1.1) with Eq. (1.2) and no issue of orders of the corner vertices, connect along directions outward from
limits arises, as it does in the Potts model with rgahs a  the lattice to a common vertex adjoined to this latfise that
consequence of the above noncommutativity, it follows thathe upper right corner connects to this adjoined vertex via
for the special set of pointg=gs one must distinguish be- edges in both the and they directions, while all of the sites
tween (i) [ Ba({G},ds) ]Ing, the continuous accumulation set on the lower and left-hand edges, excluding the previously
of the zeros oZ(G,q,v) obtained by first setting=qs and  mentioned corner vertices, have free boundary conditions. It
then takingn— e, and (i) [Ba({G},qs)]qn, the continuous s easily checked that this graph is self-dual. Note that it has
accumulation set of the zeros 8{G,q,v) obtained by first  free longitudinal(horizonta) boundary conditions. The num-
taking n—, and then takingg—qs. For these special ber of vertices is1=L,L,+ 1. Graphs of this type were used
points for calculations of Fisher zeros in Ref&88,43.
The second type of self-dual strip graph, used in R3]
Bng# Byn- (2.3 where it was labeled DBCP76], can be described as fol-
lows. Let thelL, XL, lattice strip have periodic boundary
longitudinal (=horizonta) boundary conditions and connect

9

We have discussed this type of noncommutativity in earlie

papers(e.g., Refs[73,53). 3 , all of the vertices on the upper side of the strip to a single
A general form for the Potts model partition function for eyierna vertex, while all of the vertices on the lower side of
the strip graphs considered here, or more generally, for rée strip have free boundary conditiofi&s]. An illustration
cursively defined families of graphs comprisedwfepeated ot s type of graph is given in Fig. 1. This has also recently
subunits(e.g., the columns of squares of height vertices  peen used for calculation of Fisher zeros in R&€J. In Ref.
that are repeatedd, times to form arL, XL strip of aregu-  [77] we gave exact results for structural properties of Potts
lar lattice with some specified boundary conditipris [S3]  odel partition functions and chromatic polynomials for

strips of this type, of arbitrarily great length and width, and

NzG . . .
2(G.q.v)= o [he (0.0)]™ 24 presented_exact calculations of ghromatlc polynomlals and
(G.q.) 121 cilrej(@v)] 24 resultant singular locB for v=—1 in theq plane for widths
up toL,=4.
where the terms\g ;, the coefficientscg;, and the total We comment on an interesting feature of the complex-

numberN; g , depend orG through the type of lattice, its temperature phase diagrams for self-dual infinite-length,
width, Ly, and the boundary conditions, but not on thefinite-width strips. In our earlier work yielding exact deter-
length. Following our earlier nomenclatyré3], we denote a minations of these complex-temperature phase diagrams for
\ as leading'=dominanj if it has a magnitude greater than non-self-dual strip$53,52,54,56—5R it was found that for

or equal to the magnitude of othkis. In the limitn—o the  some cases, e.g., strips with periodic longitudinal boundary
leading \ in Z determines the free energy per sfteThe  conditions,B passes through the origin of the=a~* plane.
continuous locud3 wheref is nonanalytic thus occurs where For free longitudinal boundary conditions, this does not hap-
there is a switching of dominants in Z andP, respectively, pen. For the self-dual strip graphs considered here, we can
and is the solution of the equation of degeneracy in magnieasily prove that3 does not pass through=0, i.e.,v=¢
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=, since by the inversion symmetry undér1/Z, this  with
would imply that it passes througli=0, but this is the

infinite-temperature £=0) point, where the free energy is Ts1=3v+0q+v2=3\ql+q+qZ%, (3.9
analytic, so no singular phase boundary can pass through this
point. Rs1=5v2+2vq+2v3+q?—2v2q+v*

— 5q§2+ 2q3/2§+ 2q3/2§3+ q2_ 2q2§2+ q2é~4,
. Ly=1 STRIP WITH DBC1 3.7
In this section we present the Potts model partition func- ) ) .

tion Z(Ly X L,,DBC1,,v) for the strips of the square lattice and for the numerator of the generating function
of width L, and arbitrarily great length,=m+ 1 containing B
m edges in each horizontal row of the strip, with duality- MS,19,0,2)=Asp ot As1Z, (3.8
preserving boundary conditions of type 1. We label such Qith
strip graph with DBC1 boundary conditions &d_, or just
SLy for. shor't and §,L ), to indicate the'length. The number As10=9(2v +q+v?), (3.9
of vertices isn=L,L,+1. One convenient way to express
the results is in terms of a generating function As11=—qu(v+1)(v+Q). (3.10

Referencd 78] presented a formula to obtain the chromatic
polynomial for a recursive family of graphs in the form of
sums of powers ok’s starting from the generating function,
As indicated, the coefficients in the Taylor series expansiofnd the generalization of this to the full Potts model partition
of this generating function in the auxiliary variabtere the ~ function was given in E¢[53]. Using this, we have

partition functions for the strip of lengtm. We have calcu-

lated this generating function using transfer matrix methods Z(S1,,q,0) = (As1s11tAs1) (g™

and iterative application of the deletion-contraction theorem o (As1,1—Ns1,2) '

for the corresponding Tutte polynomial. We find (Ast s+ Ast 2

MS,L,.q,v,2) (32 * (As1,2=Ns1,0)
D(SL,.00.2)" :

I'(SLy.qu.2)= 20 Z(sL,,mq,v)zZ". (3.0

(Ns12™ (3.1D
rsLy.qv,2)=
It is readily verified that this is symmetric under the inter-
change Ag; 1~Ag1 2. The free energy is given byf
=In\g ; and is analytic for all finite temperature. Regarding
the locusB as a submanifoldwith possible singularitiesin

where the numerataV(S,L,,q,v,2z) and the denominator
D(S,Ly,q,v,2) are polynomials irz, g andv that depend on
Ly but notL,. The degree of the denominator ani.e., the

number of\’s in the form (2.4), is [77] the C? space defined by the variables,¢) or (g, {), we can
' obtain the slices of this locus in the complegxplane for
2 [2L,+1 fixed v and in the complex or ¢ plane for fixedq.
NZVSYLyy}\=deg:[D(S,Ly,q,v,z)]= L +2 L,
y

(3.3 A. L, =1 with DBC1: B for fixed v

For the physical range e[ — 1], the locusB in the q

We first treat the minimum-width case,=1, which has 530 consists of a single self-conjugate arc that has end-
the appeal that the analytic results are simple but alreadkfoints at

exhibit a rich variety of behavior for the locds This family

of graphs can be represented as an open wheel formed by qe,q§=v(v—1i2i\/v+_1), (3.12
m+ 1 vertices along the rim, each except the rightmost one

connected by a spok@dge with a vertex forming the axle and crosses the reglaxis at

of the open wheel, and with the rightmost vertex on the rim

connected by a double edge to this central vertex. We calcu- q=-—v(v+3). (3.13
late for the denominator of the generating functiaith the
abbreviationS1 for S,L,=1) These pointg)., g are the branch points of the square root
JRg;. For the Potts antiferromagnet @t=0, i.e.,v=—1,
D(S19,v,2)=1—(Bv+q+v)z+v(v+1)(v+q)Z? the locusB degenerates to the single poigt2. As one
5 increases the temperature abdve0, B expands to form the
_ H (1-\gy 2) (3.4 generic arc as given above, but thenTas«, i.e.,v—0",
i=1 1= ' this arc shrinks again to a point at the origins 0. For the
Potts ferromagnet, a§ decreases from infinity, i.ey in-
where creases from 0, the arc is centered in the negative)Re(f
plane and crosses the negative gaixis at the value given
Nsi12=3[Tsi*= VRs1l, (3.5 inEq.(3.13.
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FIG. 2. Singular locu$s in the ¢ plane for the free energy of the FIG. 4. Same as Fig. 2, fa=1.7.

q=>5/4 Potts model on th&,—co limit of the Ly=1 strip with
DBC1 boundary conditions. For comparison, zerosZofor L,

pointv=¢= —1. This illustrates the noncommutativity dis-
=21 are shown.

cussed in the introduction. Ag increases abovg=1, two
complex-conjugate arcs sprout out from the poirts
=e*?m8 50 thatB is comprised of the union of these arcs
We discuss here the locus in the complex{ plane for  and the closed oval curve. The endpoints of the arcs occur at
fixed g. We shall concentrate on the range of rgai1. The  the four zeros oRg,, i.e., branch point zeros ofRg;. The

locus B is defined by the equality of magnitud¢ssi1|  right-hand endpoints of the arc are located at the complex
=|\s14. This equality can arise in two, in general separateconjugate pair of points

ways. First,(for realq), on the real axis of thé plane, since

Tg is real, if R <0 so that the square root in E@.5) is Lo (i=q Y g—1-3*i(Jg—1+ )3, (3.19
pure imaginary, it follows thafhs;1/=|\s1 2. Second, at

the four points wherdks; =0, clearlyhs; 1=Xg;1,. At Ccer-  at the anglest 6,, given by

tain special values af some of these six points can coincide.

B. Ly=1 with DBC1: B, for fixed q

Proceeding to analyz8, we first observe that aj=1, {[3 +4 \/q_—l]l/zl
this locus is comprised of a closed oval curve that surrounds 0= arcta) —————1. (3.16
the point {=—1 and crosses the redl axis at {=(1/ 2yg—-1-1
2)(—3%5), i.e., at{=—2.618 and—0.3820. The crossing _
point on the left is at = — Bs, where The left-hand endpoints occur at
™ lelea =0 "1 —Va—1-3%(Jg-1-H".
B, =4 co§(r : (3.19 (3.17

is the Tutte-Beraha number. Recall here tBatB,,; if one  FOr 4<Gac, where

were to use the opposite order of limits in EQ.3), then

Z(G,q=1p)=(v+1)" and all zeros collapse to the single Gac= (5/4)%=1.5625, (3.13
LS 1.5 ————1——
1+ § Al .
05k i 0.51 4
Im@&)0 — - m@)or- 4
_0.5- - 0.5 —
Ak . AF .
Y5 s T 05 0 0s SN T s 0 05 1
Re(0) Re(§)
FIG. 3. Same as Fig. 2, fay=(5/4)>=1.5625. FIG. 5. Same as Fig. 2, fay=1.85.
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15— I
1k - 1k 1
0.5F - 0sF g
Im(%)0 — . Im(§)0 — -
osh - ost 1
ak 4 e i
1SS T s 0 05 1 s T s 0 05 1
Re(©) Re(0)
FIG. 6. Same as Fig. 2, fay=1.9. FIG. 7. Same as Fig. 2 fay=3.

{sels comple>2< and "= ¢%, while forq=(5/47, {sisreal.  pearest to the origin, occurs &tand its inverse is the left-
For q=(5/4)%, we have (&= —1. Thus, asq increases ost crossing of the othé phase.

through the _valueq=qac, the left-hand endpo_ints of the As q increases toq=2, the two O phases contract to
gomplex-cqnjugate arcs come toget.her and pinch the negéB'oints and disappear. One can see this analytically since at
tive real axis af’= —1. FOrq>d, this part of the locuss =2 the crossing;= — 1#/2 coincides with the line seg-
forms a line segment on the negative real axis centered %ent endpoint’ .= t—l/x/i and similarly for their inverses
{=—1, whose right-hand end i&;, and left-hand end its he i | ;i 9/4=2 .95 th : dr-1 '
inverse. The above-mentioned oval curve crosses the neg!i1t € mterva' q.< e the points; and ¢, = are
tive real ¢ axis at the two points wherBg, =0, i.e., Iocat_ed in the |nt_er|or of the line segment and do not play a
special role. Agy increases above=9/4, there ceases to be
1 any realg solution of the conditiorT5;=0. The locus5 and
gt,gt‘1=—[—3i V9—4q]. (3.19 complex-temperature phase diagram are showrgfeB in
2\/6 Fig. 7. Atopological feature oB for this region ofg, namely,
1 the presence of a complex-temperature endpoint of a line
For g=1, §i=(1/2)(=3+ V5)=-0.3820,¢; =~ (1/2)(3 segment on the left, is reminiscent of the suggestive possi-
+ \/5)_: —Bs, as discussed above. The locHsand corre-  pjjity of prongs(or perhaps cusp®on B for the square-lattice
sponding complex-temperature phase diagram is plotted for 8t model inferred from the combination of calculations of
typical \_/alu_e in the interval £q<0ac, na_mely, q=>5/4 Fisher zeros and the correlation of the positions of these
=1.25, in Fig. 2. Here,e=m/2. For comparison, complex- ;o165 with locations of complex-temperature singularities
temperature Fisher zeros are shown for a long finite strip. A§ ot \vere reliably determined from analyses of low-
is evident, the density decreases strongly as one approach[(=e§nperature series expansions in R3] (see also Refs.
the intersection pointémultiple points in the terminology of [47, 48). The angled. of the upper arc endpoint decreases

algebraic geometjywhere the arcs and the oval curves crossasq increases, i.e., this endpoint moves toward the pint

each other. This is the same behavior that we found in many. ; ", e req| axis. In Table | we list some explicit values of

previous studies of complex-temperature zeros for spin mo%'s analed... as a function ofy for (the L limit of) this
els, e.0.[78,41,36,44 The complex-temperature extension st;ip 9'€0e unction of for ( x> limit of) thi

of the PM phase occupies the fullplane except for a® As g gets large, the right-hand arc endpoints move down

region enclosed by the oval curtand the singular set of toward the point=1 and the circular arc finally pinches this

meliasure z_e;o colmgrlsed tlf}/ltself). WO oh | point in the limit asq—o°. We calculate the following ex-
or an Intervalg=(yc, there are phases, namely, - hansions for the position of the upper arc endpoint for
the regions surrounded by the oval curve and separated Xrge q

the arc of thg¢|=1 circle that passes through=—1. The

rest of the plane is occupied by the complex-temperature

extension of the PM phase. This type of situation is illus- TABLE I. Values of arc endpoint angle, for various infinite-

trated in Fig. 3 forq=(5/4)2 and Fig. 4 forq=1.7. length finite-wi_d_th square lattice strips with duality-preserving
As q increases further, the tw® phases that were con- boundary conditions. Thé,. values are the same for DBC1 and

tiguous now contract and pull away from each other. This iPBC2.

illustrated in Fig. 5 forq=1.85. Eventually, these tw®

phases pull completely away so that they are no longer con- Ly a=1 a=2 a=3 a=4 a-=10
tiguous; they are then centered around the endpoints of the 1 120° 69.3° 58.1° 52.0° 37.8°
line segment. An example is shown in Fig. 6 fgr=1.9. 2 88.8° 47.7° 38.8° 34.1° 23.7°

Here the crossing of the right-ha@phase, i.e., the crossing
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.1 o8 1 4

gae:]-_"'q 1/4_Eq 1/2_|_2 iq 3/4_Eq 1_ 27|q 5/4
1238 . 1 )

+ 5110 "= 53972+ 0(q%), (3.20

(the lower one being the complex conjugastnd, for the
right and left endpoints of the line segment. On the leftgas
gets large the line segment contracts towérd— 1 and fi-
nally degenerates to a point @&=. We calculate the fol-

lowing expansion for the positions of the endpoints of this

line segment for large:

B B 1 . 3 1 41
fsodoe = —12q M- 50 e gsq M a0
123 1
1Wq’7’4+?q’2+0(q’9’4). (3.2

Thus, in the limit asq—«,B becomes the unit circlé]|
=1.

Going the other way, let us start qt=~, whereB is the
circle [{|=1. As q decreases from infinity, two changes oc-
cur immediately inB: (i) the circle breaks open on the right

side, forming two arcs with endpoints at the angles given in[hat is the dua

Eq. (3.16 that recede away from the real axis, diidla real
line segment sprouts out from the point — 1. Feature(i)
reflects the quasi-one-dimensional nature oflthesco limit
of this family of strip graphs, since for finitg, the free

energy of the Potts ferromagnet is analytic for all finite tem-

limit on the square lattice. As was discussed in Rg8, 34
for the Ising model and in Ref43] for the general Potts
model, the region arouna=1, i.e.,v =0, which is the para-

magnetic phase, is not analytically connected to the broken
symmetry, ferromagnetic phase; hence the part of the phasg%r
boundaryB that separates the complex-temperature extenl—i
sions of the PM phase and FM phases from each other mug

remain intact ag| decreases from infinity. However, the de-

viation on the left serves as a prototype of the sort of devia
tions that are suggested by finite-lattice calculations of Fisher

zeros for sections of the square lattif29,39,43,60 and

gives some insight, as an exactly calculable example, of ho

these deviations arise. Ag decreases to sufficiently small
values, the line segment changes to a region arofind

from the point of view of increasing, 5 only becomes the
unit circle|{|=1 in the limit q—oo.

We next point out another important feature of these re

sults. For theq=3 case,B crosses the real axis at
— 13, its inverse—v3, and atf = — 1. Transforming back
to thev plane, these points correspondue —1, v=—3,
and v =—V3, respectively. The crossing at=—1, i.e.,a
=0, connotes a zero-temperature critical point of the3
Potts antiferromagnet on this infinite-length =1 strip

—1. As we shall show below, the nature of the deviation
on the left can be more complicated for wider strips. Thus

PHYSICAL REVIEW B4 066116

1.5 T T T T T
1+ M -
Q0 1
0.5 OO fC% O%
L o @ ]
moo- B @§ .
o C@ocg 7
0sh o el

(o] % O
Ko & i
1k EQW _
1S5 s 0 o5 1
Re(0)

FIG. 8. Complex-temperature Fisher zeros in ¢h@ane for the
gq=4 Potts model on thé,=3 strip with DBC1 boundary condi-
tions withL,=21 (n=64).

hibits a feature of the Potts antiferromagnet on the full
square lattice. As will be seen below, this is also true of the
other widthsL,=2, 3 for which we have obtained exact
solutions for the Potts model free energy. The crossing at
=—3, i.e.,a=—2, is a complex-temperature singular point

I image &f=0 and, by duality, the singularity

in the free energy is the same as at the physical zero-
temperature critical point, in accordance with the general dis-
cussion in Ref.[45] relating physical and complex-
temperature singularities by duality. It is instructive to view
the locus in the complex/ or v plane for fixedq as a slice

6f the singular subset in the ful space defined by the pair
of variables or {,v). Thus, the crossing d atv=—1 for
g=3 is the point §,v)=(3,—1) and corresponds to the
crossing of the slice of8 at =3 in theq plane at fixedv

1. This is precisely the. that we found previously in
study of chromatic polynomials and their asymptotic
{nits and lociB for this family of graphs in Ref.77]. It will

e recalled that we found that tlgs= 3 value was universal
for all of the widths kL, <4 for which we calculated exact

solutions for the chromatic polynomial and result#htAs

we shall show below, this corresponds to the feature that for
each of the widths of strips that we study hef passes

%roughu =-—1,i.e.,{=—-1N3 (and, by duality, its inverse,

{=—v3) for g=3.

For the Ising case=2, 5 crosses the axis atv=-1
and the dual image= —2. The crossing at= —1 connotes
‘a zero-temperature critical point for the Ising antiferromag-
net on theL,— o limit of this graph.

We have also calculated Fisher zeros for the strips with
DBC1 andL,=2, 3. A typical example isL,=3, q=4,
shown in Fig. 8. For lack of space we do not show the others
here, but they are available upon request.

IV. Ly=1, DBC2

[88,89. This is very interesting, since this model also has a To elucidate the dependence®fon the self-dual bound-

zero-temperature critical point on tkiafinite) square lattice.
Thus, an infinite-length strip with width,=1 already ex-

ary conditions, we consider thg =1 strips with DBC2. We
shall denote this family generically &s andL, 1 orL1 to

066116-8
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1.5 T T T T T

051 1

Im(§)0
051 -

1+ _

pel
L3705 71 05 0 05 1

Re()

FIG. 9. Singular locuss in the { plane for the free energy of the
gq=2 Potts model on thé&,—c limit of the L,=1 strip DBC2
boundary conditions. For comparison, zerosZofor L,=20 are
shown.

specify the width. The number of's in the form (2.4), is,
from Ref.[77]

2L+ 1)_ )

Navsy |
ZbbyA L+
In particular, forL,=1, this givesNz  ;,=3. We find

A 11=0, A_12=As11, AL13=Asi2. (4.2

The corresponding coefficients in E®.4) are

cLia=«?=q(q-2), 4.3
cLyj=«xY=q for j=23, (4.4)
where[77]
PENE RN Rt
15 . .
1 e ]
051 s
Im(@©)0f .
0.5 s
15—l L

L | L L
2 15 -1 05 0 05 1
Re(©)

FIG. 10. Same as Fig. 9, fay=3.
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1.5 T T T T T

051

Im(©)0

-0.51

1k

Syl
L3705 71 05 0 05 1

Re(0)
FIG. 11. Same as Fig. 9, far=4.

whereT,(x) andU,(x) are the Chebyshev polynomials of
the first and second kinds. Structural propertieZ @®,q,v)

for these strips have interesting connections with Temperley-
Lieb algebras and Bratteli diagrams, which were pointed out
in Ref.[77].

In Figs. 9-13 we show the locu$ and associated
complex-temperature phase diagram in thplane for the
valuesq=2, 3, 4, 5, and 100(Note that the locu$ shown
in Fig. 9 isB,4.) The arc endpoints of the portion &flying
on the circle|Z|=1 are the same as for tlie,— oo limit of
the) Ly,=1 strip with DBCL, i.e.{4e, {zc0iven in Eq.(3.15.

The reason for this property is that in this area of {lgane

the locusB is determined by the equality in magnitude of
two terms,\ 1, and\ | ; 3, which are common to the parti-
tion functions for DBC1 and DBC2. In our calculations for
Ly=2, 3 we have found the same property to hold, so that for
a given widthL, and value ofq, for the strips considered
here, the locations of the right-hand arc endpoints are inde-
pendent of whether one uses DBC1 or DBC2 boundary con-
ditions. However, there is an interval énfor which x| ; ; is
dominant in the vicinity off=—1, and this leads to at least
one complex-temperatur® phase(in the nomenclature of
Ref. [33]). Figures 10 and 11 illustrate this for the casps
=3 andg=4. One observes complex-conjugate triple points

1.5 T T T T T

._.
2
=2
o
o
=
T

P T R B
2 15 -1 05 0 0.5 1

. { I R

Re(Q)
FIG. 12. Same as Fig. 9, fay=5.
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FIG. 13. Same as Fig. 9, far=100. FIG. 14. Complex-temperature Fisher zeros in thelane for
the g=2 Potts model on thé. =2 strip with DBC2 boundary
on B for g=3. An exactly solved case of a complex- conditions withL,=20 (n=40).

temperature phase boundary exhibiting such a triple point

was given in Ref[42], where it was shown how this triple its form at 16=0. We know that the deviation negr=1,

point results from three curves df coming together such i.e., the physical PM-FM transition temperature given by

that as one travels along a given curve, beyond the intersec- "' : . : .
tion point the\'s that were leading and degenerate in mag—vc_ Vg, that oceurs for these quasi-one-dimensional strips

) ) ) ; will be absent in 2D. However, the deviation in the vicinity
nitude on this curve are no longer leading, so that their debf the complex-temperature poifi= —1 should be a more
generacy is not relevant . In our exact calculations df b P P

in the g plane forn— < limits of chromatic polynomials we general feature_, not Iimi_ted to the quasi-pn_e-dimensional ha-
have found a number of such triple poiiesg.,[79—84,78) ture of the strips considered here. This inference follows
S ; P'€ POIEsg., * 2. from (i) our previous experience comparing exactly deter-
ConsideringB as the union of the various curves and line - .
AR : mined complex-temperature features of Ising model phase
segments that comprise it, this is a multiple pdintersec-

tion poing) on B since it lies on multiple branches &% In a diagrams for infinite-length strips and in 2Mj) the ob-

) . : . served scatter of Fisher zeros in 229,38,43 in this
different nomenclature in which one considers each of the . ; o
. R X - . tomplex-temperature region, afid) reliable determinations
algebraic curves individually, including the portions where . . o )
; ) . of locations of complex-temperature singularities via analy-
the pairs of degenerate-magnitullis are not dominant so .
i . . ses of low-temperature serig43,45,47,48 and the correla-
that these portions are not @) then such triple points are . X .
. . S : .~ _tion of these with points o8 [33,37,43,47,48 Hence for
not multiple points on each individual algebraic curve, since
the locus3, our present exact results suggest that treg 1/

these individual curves pass through the triple point S, pansion has zero radius of converaence. We emphasize
shown in Fig. 2 of Ref[42] (see also Ref{85-87). P 9 : P

In general, as we did for the DBC1 strips, we find that forthat this does not reduce the value of these laygapan-

any finiteq no matter how largel3 deviates from the circle sions, since the point where th_e deV|at|o_n occurs 1S generi-
.cally a complex-temperature point, and this type of deviation

|£]=1. As discussed above, the gap that opens in the circle "loes not occur near the physical PM-FM phase transition

the vicinity of /=1 is a property that is special to the quasi- _ . . .
one-dimensional nature of these infinite-length, finite-widthpomt' Indeed, larger expansions yield excellent agreement

strips. However, just as our previous exact results showed

that certain complex-temperature properties of quasi-one- LS T

dimensional spin models were similar to those of the same I

models in 20041,53,54,56—5B so also the deviations in the 1 OoooOOOOooO -
region around/=—1 are indicative of what can happen in i OOOOO o° % 1
2D in this case. Note that fog>1, the point{=-1, i.e., 051 OO @0 7
v=—14g, is a complex temperature, rather than physical, o o

point. We can now use our results to address the issue of the m@or | ® g ® 7
radius of convergence of thedlexpansion as regards the r o %,

form of 5. In general, if an expansion of some quantity in a 05~ o 0?° .
variable e has a finite radius of convergencg, then, OooO ooO oo& 1
roughly speaking, the behavior fo¢| < e, should be quali- -1 900000000 .
tatively the same as foe=0. Our results suggest that, at

least for the infinite-length finite-width strips, thegléxpan- 155 _1'.5' _'1 . _0'.5' (') . 0[5 —

sion has zero radius of convergence insofar as properties of
the locusB are concerned. This follows sindg in the ¢
plane differs qualitatively for any nonzero value of| ffom

066116-10
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FIG. 16. Same as Fig. 14, for=4. FIG. 18. Complex-temperature Fisher zeros in theglane for

the g=2 Potts model on thé. =3 strip with DBC2 boundary
with Monte Carlo measurements of thermodynamic quanticonditions withL,=20 (n=60).
ties in the Potts moddb2,64] and also for the ground state
degeneracyV(q) in theT=0 Potts antiferromagng?3,66—  sion are not related to our earlier studies of families of
72]. Furthermore, it is easily checked that the dominant terngraphs for which W(q) has no larget expansion
\ that determines the free energy on the strips that we corl73,90,91,81,5P(see also Ref92]) since in those cases, the
sider does have a well-defined largexpansior(in the vari-  breakdown of the If expansion is equivalent to the property
able 14/q). For example, forL,=1 with DBC1 or DBC2, that the singular locus is noncompact in the plane, pass-
removing the leading factor af, we have the expansion for ing through the origin of the &/ plane. This sort of break-

q \g, 4 for largeq, down does not occur for the present families of graphs, as is
o clear from the fact thaB is compact in thej plane, shown in
d Ng11=1+2vq M+ 0v3(v+1)q 2+ 0v3(v2-1)q 3 Ref.[77] and above.
2
-2
LO(q =1+ 5(;2__1)q1/z V. WIDER STRIPS

We have also calculated(G,q,v) for arbitraryg andv
PP+ for wider strips withL, =2 andL,= 3, for which our general
- (2—1)3 q formulas(3.3) and(4.1) from Ref.[77] yield for the number

Of \'s the I‘esultS NZ,DBCl,Z}\ = 5, NZ,DBCZ,Z)\: 10,
S+, Nz psc1.an =14, andNyz pgcasy=35. The analytic expres-

(£2-1)° q sions for the\'s are too lengthy to list here. In Figs. 14-21

below we show plots of Fisher zeros in tliglane for vari-
+0(q7?). (4.6)  ous values ofy.
It is interesting to note that the simplification of the
Note the poles af=+1 in this expansion. Parenthetically, complex-temperature phase diagram for the Potts model to
we note that our findings here concerning the lagg&pan-  the circle|{|=1 for g—« proved in Ref[39] and studied

1.5 T T T T T T T T 1.5 T T T T T
1+ - 1+ -
o® 000 @
(b% oo ¢] OO O% OO
0.5 Y 0.5F feYe) & o
D© o (e}
€3] o ooCb
Im@) o}l cooSom . Im(Q)0- o % 8% 7
® oOd)
05 & o5 S 00"
02 % % e 0%8 o&_
@@@ OOOOO @ (o) 1
= . 1k _
L | L | L | L | L | L | | L | L | L | L
1S5 0 w05 0 05 1 15705 0 w05 0 05 1
Re(0) Re(Q)
FIG. 17. Same as Fig. 14, for=100. FIG. 19. Same as Fig. 18, for=3.
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LS——— — T - - riodic or free and to curve around and pinch the real axis at
i 1 {=1 asq—c. For a fixed value ofj, asL, increases, the
1 - right-hand arc endpoints move closerte 1. On the left, the
i P& éﬁp} QDO 1 nature of the complex-temperature phase diagram was found
0.5 0 oQ ocg; to depend in detail on both the type of boundary conditions
o © Ooo% 1 and the width of the strip. Ag—ce, the deviations typically
Im@)0- g e @@g - include real line segments as well as posslphases. One
& . '
o 000% 1 feature was found for each width considered, namely, that for
0.5 o° 008 O& the DBC2 strips, forq=3, B crosses the real axis at{
% P =—1AW3 and at—v3. We showed that this is equivalent to
-1 %boﬁnmﬂﬁ&p . the fact that fow = — 1, each of the infinite-length strips that
. 1 we studied in Ref[77] with 1<L,<4 and DBC2 hadj,
st L L1 =3 as for the infinite square lattice. As discussed, the gap in

35 1 05 0 05 1

Re(?) the locusB that opens around=1 as 14 increases above

zero is a consequence of the quasi-one-dimensional nature of
FIG. 20. Same as Fig. 18, for=4. the strips. However, the behavior in the Re{0 region near
{=—1 can give some insight as to hasvcould behave for

further here with exact results is somewhat similar to thdargeq on the infinite square lattice.
simplification of the complex-temperature phase diagram for
the 2D spins Ising model in the limits—« to the circle ACKNOWLEDGMENT

2
|u=1 in the plane of the Boltzmann variablg=e /s . .
[93,94,4]. In both cases, the approach to the limit is singularNngEfgS?erC?O\’lvas partially supported by the NSF Grant

in the sense that there are deviations from the asymptotic

locus.
APPENDIX

VI. CONCLUSIONS 1. General

The most compact way to express a Potts model partition
nction Z(G,q,v) is often in terms of the corresponding
Tutte polynomialT(G,x,y). For the reader’s convenience,
we recall the definition of the Tutte polynomial and some

In summary, we have presented exact calculations of th?
Potts model partition functioZ(G,q,v) on self-dual strip u
graphsG of the square lattice with fixed width, and arbi-

trarily great lengthL, with two types of boundary condi- . . .
tions. In the infinite-length limit we have studied the result- basic formulas relating these functions héeeg., [53]). For

ant complex-temperature phase diagram. In particular, w&" arbitrary grapl@ the Tutte polynomial of5, T(G,x,y), is
have considered the widtis,=1,2,3. We have used these 9'V€" by[5-7]

results to study the approach to the laggkmit of B, where

this locus is the unit circléZ|=1. We find that, for a given T(G.x,y)= >, (x—1)KCI=kKOG)(y_1)cC" (A1)
Ly and set of self-dual boundary conditions, a portion3of G'cG

lies on this unit circle, while for any finitg, a portion devi- . _ ] )
ates from this circle. For the strips considered here we fingvhere the spanning subgra@' was defined in the intro-
that the right-hand arc endpoints on the circle are indeperfluction, and we recall thak(G’), e(G’), and n(G’)

dent of whether the longitudinal boundary conditions are pe=N(G) denote the number of components, edges, and verti-
ces of G’, where

15—
L c(G')=e(G')+k(G')—n(G"), (A2)
1_
i is the number of independent circuits@1. As stated in the
05L text, k(G)=1 for the graphs of interest here. Now let
m@of DU
x—1+;, y=a=v+1, (A3)
0.5+
i so that
-1+
q=(x-1)(y—1). (A4)
A T s 0 05
Re(D) Then
FIG. 21. Same as Fig. 18, foy=100. Z(G,q,0)=(x—1 O (y-1)"OT(G,x,y). (A5)
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For a planar graplc the Tutte polynomial satisfies the

duality relation

T(G,x,y)=T(G*,y,x), (A6)

where G* is the (plana) dual to G. As discussed in Ref.
[53], the Tutte polynomial for recursively defined graphs
comprised ofm repetitions of some subgraph has the form

Ny

T(Gm,x,y)=j§=:1 cre,i(Aa)™ (A7)

One special case of the Tutte polynomial of particular inter-
est is the chromatic polynomi&(G,q). This is obtained by
settingy=0, i.e.,v=—1, so thatx=1—q; the correspon-

dence isP(G,q)=(—q)"®(-1)"T(G,1—q,0).

2. Strips with DBC1
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Ag 1= —[X+y+2(x?+y?) + 3xy+5xy(x+Y)

+xy(x2+y?) +x3+y3+(xy)?], (A16)

Asr = XY[B(X+Y) +4(X2+y?) +6xy+3xy(x+y) +x3+y3
+(xy)?], (A17)

Asz 3= — (XY)?[2(x+Y) +X2+y?+ 3xy+Xy(x+Y)],
(A18)

A52,4:(XY)4, (A19)

Dr(S,2X,Y,2) =1+ b, 12+ by 2%+ by 23+ by i2°
+bg 2, (A20)
where

bez1=—[3(1+Xx+y)+xy+x2+y?], (A21)

The generating function representation for the Tutte poly-

nomial for the stripS,, of the square lattice with length,

=m+ 1 vertices, i.e.medges in each horizontal row, and of
with duality preserving boundary conditions of

width L,
type 1, is

FT(Sm,Ly,x,y,z)=mE:O T(Sm,Ly,xy)Z"  (A8)

We have

NT(Sl I—y :X,yyz)

FSL XY D=5 sy A9
ForL,=1 we find
N7(S1x,y,z)=(Xx+Yy)—Xyz (A10)

2
Dr(SAXY,2)=1—(1+x+y)z+xy2=]] (1-\1s1;2),
<1

(A11)
with
M sa1a=s{1+x+y=[1+2(x+y)+(x—y)?]¥3,
(A12)
ArsohtsiT AT s
T(Sm.X,y)= — Ars)™
Ars1—ATs2
ArsohtsotArst m
— (Ar,s2™
Ars2—ATs1
(A13)

ForL,=2 we find

N1(S2X,Y,2) = Agy 0+ Asp 12+ Agp 2+ Asp 2°+ Asz(,4z4: )
Al4

where

Ag o= X+Yy+xXy+Xx>+Yy?, (A15)

bsp ,=1+3(x+y)+3(x*+y?) +8xy+(x*+y?)
+5xy(X+Y)+ Xy(x2+y?) + (xy)?, (A22)

b z= —XY[3+5(x+Yy) +4(x*+y?) +6xy+(x°+y®)

+3xy(x+y) +(xy)?], (A23)
by 4= (XY)2(1+X)(1+y)(1+x+Y), (A24)
bsp 5= — (xy)*. (A25)

For L,=3 our general results in Rdi77] yield the result
that there are 14 terms, and we find that Meg3;'s are
roots of an algebraic equation of degree 14. This is too
lengthy to record here, but is available upon request.

3. Strips with DBC2
We have

N
T,L,Ly,}\

T(LmiLy,Xy)= 21

CT,L,Ly,j()\T,L,Ly,j)m:

(A26)
whereNT,L,Ly,x= NZ,L,Ly,x , and our general formula for this
number, from Ref[77] was given in Eq(4.1).

alLy=1
We haveNt | ;,=3 and

A=l (A27)

for j=2,3, (A28)

At L1j=AT,s1j-1

whereht 511 andt 51, Were given in Eq(A12). The cor-
responding coefficients are
Cri11=0 kP =q-2=xy-x—y-1, (A29)

CT,L,j:q_lK(l):l for j=2,3, (A30)
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where«(® was defined in Eq(4.5) in the text.
b. L,=2

We haveNt | ,,=10. The term\y | 5, is

ArL21=1 (A31)
The | »; for 2<j<5 are solutions to the equation

E—[2(x+y)+3]E+[ X2+ y?+3(x+Yy) +4xy+1]&2
—Xxy[2(x+Yy)+ 3]+ (xy)?=0. (A32)

The\y | »; for 6<j=<10 are solutions to the equation

£+ b 1EM+ b 23+ Dy 387+ by 4E+ s 5= 0.

(A33)
The corresponding coefficients are
Cri21=09 '«¥=(q-1)(q-3)
=(Xy=x=y)(Xy—x—y—2), (A34)

CT,L,z,j:qilK(z):q_ZZXy_X_y—1 for 2<j<5,
(A35)
“hh=1

for 6<j=<10. (A36)

CtL2i=q

c.L,=3

Here our general formulas in Rdf77] yield the results
that there are 35 terms in all, comprised(fone term with
coefficient q~*«*®, namely, N1 3,=1, (i) six terms
NTL3j, 2<]<7, with coefficientq™*«x®, (iii) 14 terms
\1L3j for 8<j=<21 with coefficientq *«x®, and (iv) 14
termshy | 3; with 22<j=<35 with coefficientq *«™). The
terms in(ii) are roots of the sixth-degree equation

£5— (3x+3y+5) &5+ (3x2+ 9y x+ 10x+ 3y2+ 10y + 6) &*
— (X34 9yx?+ 5x2+ 9y?x+ 20y x+ 6x+ y>+ 5y?+ 6y
+1) £+ xy(3x%+ 9y x+ 10x+ 3y?+ 10y + 6) £2
—x?y?(3x+3y+5)é+x3y3=0. (A37)

The equation of degree 14 for ther, 3; with coefficient

q '« is the same as the single degree-14 equation for the
terms in theL =3 strip with DBC1. Both this and the other
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recall that the graph& that we consider are connected. Then
the number of spanning trees Gf Ns{(G), is

Ns(G)=T(G,1,1), (A38)
the number of spanning forests Gf Ng(G), is
NsHG)=T(G,2,1), (A39)

the number of connected spanning subgraphs Gf
NcssdG), is
Nessd G)=T(G,1,2), (A40)
and the number of spanning subgraph$soMNssd G), is
Nssd G)=T(G,2,2). (A41)

Since the graphs that we consider are self-dual, and using the
symmetry relationA6), we have

NsH(G)=Ncssd G*)=Ncssd G).

From our calculations of Tutte polynomials, we find the
following results.

(A42)

5. Ly= 1, DBC1
25\ [3+5\™ 2.5
NST(Slm)—(l'i‘? 5 +<1—?
3—5\™
x(—\f) , (A43)
2
NsHS1m) =Ncssd S1m)
3 3
=5 +V2[(2+vD)"+ E—Vi)(z—ﬁ)m,
(A44)
Ngsd Slpp) = 28Skm) = p2(m+1) (A45)

Since these quantities grow exponentially, it is natural to
define an associated quantity that measures this gri@8th
97]. In particular, for the number of spanning trees, we define

Z{G}: I|m nil In NST({G}) : (A46)

n—oo

degree-14 equation are too lengthy to list here, but can be

provided at request.

4. Special values of Tutte polynomials

For a given graplG=(V,E), at certain special values of

the arguments andy, the Tutte polynomial (G,X,y) yields
quantities of basic graph-theoretic interEst10]. We recall

For the present,=1, DBC1 strips, we thus have=In[(3
+/5)/2]=0.9624. A general upper bound on the number of
spanning trees of a graph is [98]

1/2|g|\"?
NST(G)sﬁ( ) .

— (A47)

some definitions: a spanning subgraph was defined at the

beginning of the paper; a tree is a connected graph with n&or the present =1, DBC1 strips, this gives the upper
cycles; a forest is a graph containing one or more trees; andoundz<<2 In 2=1.386, which is seen to be satisfied by our
a spanning tree is a spanning subgraph that is a tree. Wesult.
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6.L,=1, DBC2 wherehr | »;(1,1), 2<j<5 and 6<j=<10 are the roots of
" " Eqg. (A32) and Eq.(A33), respectively, foxx=1, y=1, viz,
Ne(LL)= 2+ 3+V5|" [3+45 E-78+132-76+1=0, and - 1)(&4- 1183+ 25¢
5 m 2 2 ' —11£+1)=0
(A48) . .
3+.5 3-5
NsHL1,)=NcssdLln)=—2+(2+v2)"+(2—v2)™, Nse(L2m) =Ncssd L2m) =3-2|| — i
(A49)
Ngsd L1,,) =28\ 1m=22m (A50) +(3++/5)™+(3— \/E)m}
As discussed beforb3,97], for a givenL, and set of trans- 10
verse boundary conditions, the valuezit the same, inde- + D NrL2i(2,D]™ (A52)
pendent of whether the longitudinal boundary conditions are i=6 el

free, as in DBC1 or periodic, as for DBC2.
whereht ,;(2,1), 6<j=<10 are the roots of EqA33) for

7.L,=2, DBC2 X=2,y=1, viz, £ 195+ 943~ 16262+ 966~ 16=0
5 Ngsd L2, = 28(2m) = 24m, (A53)
Ns(L2m)=3-22 [\ 5(1,D]"
S " ST Hence, in particular, for spanning trees, we fizd1.044 for
10 L,=2. It is straightforward to use our exact calculations of
+2 [Nre2(1LD]™, (A51) Tutte pol_y_nomlals_fon__y=_3 with DBC1 and DBCZ bound-
j=6 ary conditions to list similar results for spanning trees, etc.
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